Ingatkembali: persamaan garis polar atau garis kutub pada lingkaran yang melalui titik adalah: Pada soal diketahui apa code. Q&A; Top Lists; Q&A; Top Lists; Tentukan persamaan garis singgung pada lingkaran di titik yang diketahui berikut (x+4)2+y2=9 (-1 0) 1 hours ago. Komentar: 0.Persamaan garis melalui titik -2, 1 dan tegak lurus garis yang persamaannya 2y = - x + 1 adalah . . .A. y = 2x + 5B. y = - 2x + 5C. y = 2x - 5D. y = 1/2 x - 5Pembahasan Diketahui Persamaan garis 2y = - x + 1Melalui ttik -2, 1Ditanyakan Persamaan garis yang melalui titik -2, 1 dan tegak lurus dengan garis 2y = -x + 1 adalah . . .?Jawab Ingat 1. Persamaan garis lurus yang melalui sebuah titik dan bergardien m adalah y - y1 = mm - x12. Gardien sebuah garis ; y = mx + c atau ax + by + c = 0, gardiennya adalah m = -a/b3. Gardien garis yang saling tegak lurus adalah m1 . m2 = - 1Maka dapat kita selesaikan CARA I CABI Cara BiasaPersamaan garis yang melalui titik -2, 1 dan tegak lurus dengan persamaan garis 2y = -x + 1 adalah Persamaan garis 2y = -x + 1 kita rubah menjadi 2y = - x + 1x + 2y = - 1Gardiennya adalah m = -a/b = - 1/2Karena tegak lurus, maka m1 . m2 = -1- 1/2 . m2 = - 1m2 = -1 x - 2/1m2 = 2Kita subsitusikan ke dalam rumus y - y1 = mx - x1y - 1 = 2x - -2y - 1 = 2x + 2y - 1 = 2x + 4y = 2x + 4 + 1y = 2x + 5CARA II CADAS Cara CerdasPersamaan garis yang melalui titik x1, y1 dan tegak lurus dengan garis ax + by + c = 0 adalah bx - ay = - garis melalui titik -2, 1 dan tegak lurus garis yang persamaannya 2y = - x + 1 adalah Kita ubah dulu persamaannya supaya seperti persamaan = -x + 1x + 2y - 1 = 0Kita peroleh a = 1b = 2x1 = - 2y1 = 1Maka bx - ay = - - = 2.-2 - 1.12x - y = -4 - 12x - y = - 5y = 2x + 5Jadi, Persamaan garis yang melalui titik -2, 1 dan tegak lurus dengan garis 2y = -x + 1 adalah y = 2x + A .Itula pembahasan contoh soal mengenai materi persamaan garis lurus. Semoga bermanfaat dan mudah untuk dipahami yah. Tetap semangat dalam berjuang, terus masifkan dalam berdoa. Terima kasihh.. Advertisement
Jadigradien garis 2x + 3y = 1 adalah -2/3, karena sejajar maka persamaan garis yang melalui titik B (-4, 0) yakni: y - yB = m (x - xB) y - 0 = (-2/3). (x - (-4)) y . 3 = (-2/3) (x + 4) . 3
Persamaan garis yang sejajar dengan garis yang melalui titik 2, 5 dan −1, −4 adalah …. A. y = ‒3x + 14 B. y = ‒1/3x + 6 C. y = 1/3x + 4 D. y = 3x ‒ 4 Jawab D Dua buah garis yang dikatakan saling sejajar jika memiliki nilai gariden m yang sama. Rumus gradien yang diketahui melalui titik x1, y1 dan x2, y2 m = ΔyΔx = y1 ‒ y2x1 ‒ x2 Menentukan gradien garis yang melalui titik 2, 5 dan −1, −4 m = 5 ‒ ‒42 ‒ ‒1 = 93 = 3 Persamaan garis yang sejajar dengan garis yang melalui titik 2 5 dan -1 -4 adalah garis lurus yang memiliki nilai gradien m = 3. Nilai gradien dari suatu garis lurus dengan persamaan y = mx + c adalah m. Sehingga gradien garis lurus dari pilihan yang diberikan memiliki nilai-nilai seperti berikut. Persamaan garisNilai gradieny = ‒3x + 14 ‒3y = ‒1/3x + 6 ‒1/3y = 1/3x + 4 1/3y = 3x ‒ 4 3 Jadi, persamaan garis yang sejajar dengan garis yang melalui titik 2 5 dan -1 -4 adalah y = 3x ‒ 4.
y 1 = 4. Titik (4,8) maka : x 2 = 4 dan. y 2 = 8. Nilai dari masing-masing x dan y dimasukkan ke dalam persamaan diatas. Sehingga menjadi : Jadi persamaan garis yang melewati titik (2,4) dan (4,8) adalah 2y - 4x = 0. Atau bisa disederhanakan lagi dengan membagi 2 semuanya, sehingga menjadi : y - 2x = 0.
PembahasanJawaban yang benar untuk pertanyaan tersebut adalah B. Ingat Gradien garis bentuk implisit A x + B y + C = 0 yaitu m = B − A ​ Syarat dua garis sejajar m 1 ​ = m 2 ​ Persamaan garis melalui titik x , y dan gradien m yaitu y − y 1 ​ = m x − x 1 ​ Akibatnya kita peroleh Gradien garis x − 3 y + 2 = 0 yaitu m 1 ​ = − 3 − 1 ​ = 3 1 ​ m 1 ​ sejajar dengan m 2 ​ , sehingga m 2 ​ = m 1 ​ = 3 1 ​ Persamaan garis melalui titik − 2 , 5 yang berarti x 1 ​ = − 2 , y 1 ​ = 5 , dan bergradien m 2 ​ = 3 1 ​ y − y 1 ​ y − 5 y − 5 y − 5 − 5 − 3 2 ​ − 3 15 ​ − 3 2 ​ − 3 17 ​ 3 − 3 17 ​ − 17 ​ = = = = = = = = = ​ m x − x 1 ​ 3 1 ​ x − − 2 3 1 ​ x + 2 3 1 ​ x + 3 2 ​ 3 1 ​ x − y 3 1 ​ x − y 3 1 ​ x − y 3 3 1 ​ x − y x − 3 y ​ Dengan demikian, persamaan garis melalui titik − 2 , 5 dan sejajar garis x − 3 y + 2 = 0 adalah x − 3 y = − 17 . Jadi, jawaban yang benar adalah yang benar untuk pertanyaan tersebut adalah B. Ingat Gradien garis bentuk implisit yaitu Syarat dua garis sejajar Persamaan garis melalui titik dan gradien yaitu Akibatnya kita peroleh Gradien garis yaitu sejajar dengan , sehingga Persamaan garis melalui titik yang berarti , dan bergradien Dengan demikian, persamaan garis melalui titik dan sejajar garis adalah . Jadi, jawaban yang benar adalah B.
Teksvideo. jadi untuk mengerjakan soal ini kita diminta mencari persamaan garis yang melalui titik min dua koma Min 4 dan Ini berikan nilai dari x koma y ini hanya melalui satu titik berarti kita untuk mencari persamaan garis yaitu menggunakan rumus y dikurangi dengan gitu = M2 gradiennya X dengan x min x 1 nah disini kita bisa itu karena di sini dikatakan persamaan garis ini tegak lurus
MelaluiDua Titik Sejajar Sumbu X dan Y Saling Sejajar Saling Tegak Lurus Pada postingan ini Mafia Online akan membahas kebalikan dari yang sudah dibahas pada postingan sebelumnya yakni cara menentukan persamaan garis melalui sebuah titik (x1, y1) dengan gradien m.
Padabagian sebelumnya, kamu telah mengetahui bahwa suatu garis yang melalui titik A (x1, y1) dan B (x2, y2) memiliki gradien m = y 2 − y 1 x 2 − x 1 . Pada topik sebelumnya, kamu pun telah mempelajari persamaan garis yang melalui titik (x1, y1) dan bergradien madalah y - y1 = m(x - x1).f1r1.